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Efficient Solving Methods Exploiting Sparsity of Matrix in
Real-Time Multibody Dynamic Simulation with Relative

Coordinate Formulation

Cboi, Gyoojae*, Yoo, Yungmyun, 1m, Jongsoon
Korea Automotive Technology Institute(KATECH), Chungnam 330-910, Korea

In this paper, new methods for efficiently solving linear acceleration equations of multibody

dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient
matrix of the equations tends to have a large number of zero entries according to the relative

joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum
off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The

proposed methods, using sparse Cholesky method and recursive block mass matrix method, take
advantages of both the special structure and the sparsity of the coefficient matrix to reduce
computation time. The first method solves the n X n sparse coefficient matrix for the

accelerations, where n denotes the number of relative coordinates. In the second method, for
vehicle dynamic simulation, simple manipulations bring the original problem of dimension n X

n to an equivalent problem of dimension 6 X6 to be solved for the accelerations of a vehicle
chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more
efficient than the classical approaches using reduced Lagrangian multiplier method. With the
methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per

cent compared to the classical approach.

Key Words: Real-Time Dynamic Simulation, Multibody Dynamics, Exploiting Sparsity, Hard
ware-in-the-Loop (HIL) Simulation

1. Introduction

Real-time hardware-in-the-loop (HIL) simul

ation has been quite widely used in the autom
otive industry with the advent of complex elec
tronic controls to reduce development time and
cost (Besinger, 1995). To develop an accurate real

time HIL facility, a real-time vehicle dynamic
analysis program with reasonable simulation ac

curacy is needed.
The computational speed of simulation strongly
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depends on the coordinate systems used to
formulate the equations of motion and solution
methods (Lee, 1998; Bae, 1999; Cuadrado, 1997).

There are two extreme coordinate systems: the
Cartesian and the relative joint coordinate

systems. The Cartesian formulation uses a
maximal set of absolute position and orientation
coordinates for each body. It is convenient to use

this formulation to represent a mechanical system.
The major drawback of it is, due to the maximal
setting, the loss of computational efficiency. In

contrast to the formulation, relative coordinates
on joints between bodies may be used to define
positions and orientations of bodies relative to

one another, yielding a minimal set of
coordinates. The relative joint formulation has

substantial analytical complexity, but
computational efficiency is gained. Using these
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where the right side of the acceleration constraint

equations is given as

3. Topology Based Sparsity Pattern
Generation

(3)

(1)

(2)

(4)

Fig. 1 Quadruped model

aq+bq=f+BT
).,

([)(q)=O

where q, qand q are the vectors of dimension n
representing the generalized position, velocity and

acceleration of the system, respectively. In the

equations f denotes the generalized external force

vector, II the Lagrangian multiplier vector of di-

mension m and B = ~~ the m X n constraint

Jacobian matrix, with m< n. The kinematic con

straint equations ([)(q) are assumed to be linearly

independent.

The constraint acceleration equations derived

by successive time difTerentitations of Eq . (2) can

be appended to the equations of motion in Eq. (I)

to obtain a differential-algebraic equation as

In order for a simulation to progress to the next

step, computation of the generalized accelerations

q from Eq. (3) and integrations are required.

The coefficient matrix of Eq. (3) tends to have

a large number of zero entries and exploiting

sparsity is necessary to solve the equation

2. Equation of Motion

formulations, the equations of motion are derived

III the form of linear equations about

accelerations and Lagrangian multipliers. The

accelerations are integrated to obtain velocities

and positions in the next step. To reduce the

matrix size of resultant linear equations, coordi

nate partitioning method (Amirouche, 1992;

Wehage, 1982) and reduced Lagrangian multi

plier method (Serban, 1997) are used. These

methods transform the equations of motion to a

minimal set of coordinates without exploiting the

structure and sparsity of the matrix to minimize

computation time, as is done in the relative joint

formulation. In the Cartesian formulation, a

topology based approach for exploiting sparsity

of resultant block diagonal matrix is introduced

by Serb an (Serb an, 1997).

This paper focuses on improving the efficiency

of solving the system of linear equations that

determines accelerations and Lagrangian multi

pliers in the relative joint formulation for real

-time dynamic simulation. The coefficient matrix

of linear equations has a particular structure in
the relative joint formulation and a topology

-induced sparsity pattern when solv ing for the

unknowns.

In this paper, new methods for efficientl y

solv ing linear equations in mult ibody dynamics

using the relative joint formulation for real-time

simulation exploiting sparsity are presented.

Sparse Cholesky method and recursive block

mass matrix method are developed to solve the

linear equations efficiently and reduce com

putation time further. The methods are applied to

solve the equations of real-time vehicle dynamic

simul ation and the computation time is compared

to that of the classical approach of reduced

Lagrangian multiplier method.

The Kane's equations with und etermined mul

tipliers for constrained multibody system derived

by Wang (Wang, 1987) may be given in matrix

form as
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Table 1 Bodies, joints and constraints of vehicle model

No. Description No. Description

I chassis 6 rear left knuckle
Bodies 2 rack 7 front right wheel

3 front right knuckle 8 front left wheel
4 front left knuckle 9 rear right wheel
5 rear right knuckle IO rear left wheel

Abbr. Description

Joints and SCJl front MacPherson strut suspension composite joint
Constraints SCJ2 rear MacPherson strut suspension composite joint

R revolute joint
T translational joint

DC driving constraints

(a) (b)

Fig. 2 Graphical representation of quadruped model

efficiently. The matrix a has the special pattern of

sparsity called doubly bordered block diagonal

(DBBD) matrix in relative joint fomulation, Two

examples are used to illustrate this point. The first

is the quadruped model presented in Fig. 1. The

model is presented in Fig. 2 using graph and, in

the figure, the bodies are represented as vertices

and the joints as connecting edges. The numbers

in the bracket mean the relative joint coordinate

numbers. The two different generalized coordi

nate numbering sequences shown in Figs. 2(a)

and 2(b) yield two different matrices shown in

Figs. 3(a) and 3(b), respectively. In the figures,

non-zero entries are denoted by x and there are

many zero entries in the matrix. Figure. 3 shows

that the pattern of matrix a and efficiency of a

sparse matrix solver for it directly depend on the

numbering scheme.

Selection of relative coordinate numbering is

made in the modeling stage. For improved per

formance, it is important to determine the

numbering sequence to minimize the bandwidth

of off-diagonal entries, minimizing the amount of

calculation in solving the matrix. The second

example is a vehicle model presented in Fig. 4

with suspension composite joints and a compliant

tie-rod model for real-time simulation. The joints

and the model are used to reduce the computation

time of simulation. One can refer to the paper by

Choi (Choi, et. aI., 2000) for the details of the

composite joints and the model. Description of all

the bodies and joints are listed in Table 1. For the

model, two different generalized coordinate

numbering sequences shown in Figs. 5(a) and 5

(b) yield two corresponding matrices a shown in

Figs. 6(a) and 6(b). As seen in Figs. 3 and 6,

relative coordinate numbering is critical in

determining the sparsity pattern of matrix a. To
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I 2 3 4 5 6 1 8 9 10 II 1213 14 15161118

x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x X X X X 0
X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X 0 X X X

X X X X X X X x

~Ix x x x x x x x
x x x x x x x x

(a)

I 2 3 4 5 6 7 8 9 10 II " 13 14 15 16 17 18
1 X X X X X X X X X X X X X X X X X X

2 X X X X X X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X X X X X

4 X X X X X X X X X X X X X X X X X X

5 X X X X X X X X X X X X X X X X X X

6 X X X X X X X X X X X X X X X X X x
7 X X X X X X X X X

8 X X X X X X X X X 0
9 X X X X X X X X X

10 X X X X X X X X x
II X X X X X X x x x
12 x x x x x x x X X

13 X X X X X X X X x
14 x X x x x x x x X

15 X x x x x x x x X

16 X x x x x x x x X

11 x x x x x x x x x
18 x X x x x x 0 x x x

(b)

ing to the relative coordinate numbering as shown

in Figs. 3 and 6. The matrix a has the special

form of sparse matrices as doubly bordered block

diagonal (DBBD) matrix (Tewarson, 1972) in

relative joint coordinate formulation when the

sequence of row and column numbers are

changed. In Cartesian formulation, it has the form

of a banded diagonal matrix (Serban, 1997).

The solving algorithm for DBBD matrix are

developed as shown in Fig. 7 using the Cholesky

decomposition. Using the algorithm, one can

efficiently solve for generalized acceleration by

removing unnecessary zero (0) calculations. In

Fig. 7, N is the size of matrix a, NQB the number

of non-zero entities from diagonal element to

backward, IDQB the column number according

to NQB, NQF the number of non-zero entities

from diagonal element to forward, and IDQF the

column number according to NQF. The

parameters are automatically decided from the

topology information of the system. However, the

Cholesky decomposition method has the

disadvantage of requiring the evaluation of n
square roots which, on a computer, usually takes

much longer than other arithmetical operations
(Jennings, 1977).

4.3 Recursive block mass matrix method

The coefficient matrix a shown in Fig. 6(a) can

be partitioned with the non-zero block mass

matrices and Eq. (5) may be rewritten as

(6)

(5)

4.2 Sparse cholesky decomposition method

The pattern of matrix a is determined accord-

4. Solving Methods of the Equations
of Motion

Fig. 3 Pattern of the matrices with two relative joint numbering schemes of quadruped model
(x: non-zero entries)

minimize the off-diagonal entries and to get the

block pattern of the matrix, some numbering

schemes has to be adapted. First, from the tree

structure of the graph, the joint coordinates

should be numbered sequentially along the body

of each branch. Second, for a closed-loop

mechanism, the cut joint position to make span

ning tree may be located to minimize the number

of joint coordinates at each branch and constraint

equations. Using the proposed solving methods,

the sparsity pattern of the matrix a will be used

for efficient solving of the linear equations.

4.1 Reduced Langrangian multiplier method

Equation (I) is solved for q in terms of un

known Lagrangian multiplier A as

Assuming that a is nonsingular and using Eqs.

(3) and (5), one can obtain the linear system

Ba-1BTA=r-Ba'(] -bq)

This can then be solved for Aand, using Eq. (5),

one can solve for generalized accelerations q.
Thus, the maximum size of the coefficient matrix

a of the equations is n X n and the sparsity

pattern of matrix a can be used for advantage.
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x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x 0
x x x x x x x x x
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x x x x x x 0

~x x x x x x x x
x x x x x x xFig. 4 Vehicle model
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16

17

1 2 3 4 6 7 8 9 10 11 121314 15 16 17

(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X X X X

4 X X X X X X X X X X X X X X X X x
5 X X X X X X X X X X X X X X X X x
6 x x X x x x x x x x x x x x x x x
7 X x X x x x x x X

8 X x X x x x x x X

9 X x X x x x x x 0
10 X X X X X X X X

11 X X X X X X X X x
12 x x x x x x x x x
13 X X X X X X X X X

14 X X X X X X X X x
15 x x x x x x x x
16 X X X X X X X X

17 x X x x x x 0 x

(b)

Fig. 6 Pattern of the matrices with two relative joint
numbering schemes of vehicle model(x: non-
zero entries)

and rack of a vehicle, respectively. And the right

side of Eq. (5) is also partitioned for relative

coordinates.

Eq. (7) can be written as

6

AllYl+~AliYi=FI (8)
;=2

A[;YI+AiiYi=Fi, i=2, ...... , 6 (9)

From Eq. (9) Yi, i=2, ....... 6 can be solved in

terms of YI and substituted into Eq. (8) to derive

the reduced equations of motion as

Eq. (10) is first solved to obtain the vector YI

and then substituted into Eq. (9), to solve the
acceleration vector Yi, i=2• .. .. . ., 6. This proce

dure can be used to solve Eq. (6) for Lagrangian

multipliers, Thus the maximum matrix size to

solve the equations with this process is 6 X6 for

vehicle dynamic analysis.

[17]

[13]

R
[14]9

(a)
[17]

DC
··..··... tie-rod 7 [13]

<, R
[7,11]

scn
[1,2,3,4,5.6]

[9]

R
[15]9

R
[16] 10

[14]

All A I2 Ala A I4 Als AI6
Af2 A 22 0 0 0 0

Afa 0 A aa 0 0 0

Af4 0 0 & 0 0

Afs 0 0 0 Ass 0
Af6 0 0 0 0 A 66

(b)

Fig. 5 Graphical representations of vehicle model

where. for a vehicle model. YI= (ijIC12ijaij4ijsij6f.

Y2=(ij7ijaij9)T. Ya=(ijlOijllijI2f. Y4=(ijlaijI4f, YS=

(ijlsijl6f and Y6 = (ij17) denote the relative
coordinates of chassis, front right knuckle, front

left knuckle, rear right knuckle, rear left knuckle
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DOFORI= J,N
DOFORJ= J,NQB(I)

JP = IDQB(J,l)
SUM = A(l,JP)
DOFOR K = 2,NQF(I)

KP = IDQF(K,!)
SUM = SUM-A(I,KP)*A(JP,KP)

ENDDO
IF (I=JP) THEN

IF (SUM<=O) STOP 'FAILED'
A(I,!) = SQRT(SUM)

ELSE
A(JP,!) = SUM/A(l,!)

ENDIF
ENDDO

ENDDO

(a) Decomposition
DOFORI= J,N

SUM=B(!)
DOFOR K = 2,NQF(!)

KP = IDQF(K,I)
SUM = SUM-A(I,KP) *X(KP)

ENDDO
X(l) = SUM/A(I,I)

ENDDO
DOFORI=N,l,-l

SUM=X(I)
DOFOR K = 2,NQB(!)

KP = IDQB(K,I)
SUM = SUM-A(KP,I)*X(KP)

ENDDO
X(l) = SUM/A(I,I)

ENDDO

(b) Back substitution

Fig. 7 Modified Cholesky method for DBBD sparse
matrix

5. Numerical Results and Discussion

To compare the performance of different

solving methods, a vehicle model shown in Fig. 4

is used. The model is equipped with front and

rear MacPherson strut suspension systems and

these are modeled by front and rear MacPherson

strut suspension composite joints (Choi, et. al.,

2000). The model consists of 10 rigid bodies and

has 16 degrees of freedom (17 relative

coordinates, 1 driving constraint). All the three

methods have the same computational work to

generate Eq. (1). The proposed linear equation

solvers are the sparse Cholesky method and

recursive block mass matrix method. To solve

Eqs. (5) and (6), the sparse Cholesky algorithm

shown in Fig. 7 is used to remove unnecessary

zero (0) calculations. For the recursive block

mass matrix method, the maximum size of the

coefficient matrix of Eq. (10) is 6X6.

All numerical experiments are performed on an

ADRTS real-time computer with a PowerPC 604

333Mhz processor using non-optimized

FORTRAN complier to compare the com

putation time clearly. Total computation times for

a vehicle dynamic simulation are presented in

Table 2. As seen in the table, the proposed two

methods are more efficient than the classical one.

These results show two ways of improving the

efficiency of solving the linear equation. One is

taking the advantage of exploiting sparsity and

the other a better relative coordinate numbering

within the matrix. The proposed solution

techniques showed up to 14 per cent of total

computation time reduction compared to that of

the classical approach using reduced Lagrangian

multiplier method in a vehicle model.

Table 2 Timing results for the vehicle model

Linear solving method Computation time Speed up ratio
[seconds] [%]

Reduced Lagrangian multiplier method 1tl.42 100

Sparse Cholesky method 9.84 94.4

Recursive block mass matrix method 8.98 86.2

*) Simulation conditions;
I) Double lane change(ISO TR3888 severe lane change maneuver)
2) Simulation time: 0-10 seconds
3) Integration method: Euler method
4) Integration step size: I. 2 milliseconds
5) Compiler: Non-optimized FORTRAN
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6. Conclusion

New methods for efficient solving linear
equations of multibody dynamic simulation in

relative formulation for real-time simulation are
presented. By adequate joint coordinate

numbering, it is shown that one can obtain an
efficient coefficient matrix which has minimal off
diagonal terms and block pattern of non-zero

entries. A quadruped model and a vehicle model

are presented to explain these properties. To solve
the sparse coefficient matrix of linear equation,
two methods are proposed. First, the sparse

Cholesky method solves a sparse n X n coefficient
matrix for accelerations, where n denotes number
of relative coordinates. Second, using recursive

block mass matrix method for vehicle dynamic
simulation, simple manipulations transform the

original problem of dimension n X n to an equiv
alent problem of dimension 6 X6 to be solved for

the accelerations of a vehicle chassis. The
proposed solution techniques proved to be more
efficient than the classical approach up to 14 per
cent of total computation time in a vehicle model.
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